5 MIG welding machines handbook plus MIG welders shopping

Top welding tips: how to become a more skilled welder and how to choose the top welding equipment. Before you get started, conduct online research to see what the best practices are for the specific wire you have or contact a trusted filler metal manufacturer. Doing so not only tells you what the manufacturer’s recommended parameters are for your diameter wire, but also what the proper wire feed speed, amperage and voltage is, along with the most compatible shielding gas. The manufacturer will even tell you what electrode extension or contact-to-work distance (CTWD) is best suited for the particular wire. Keep in mind that if you get too long of a stickout, your weld will be cold, which will drop your amperage and with it the joint penetration. As a general rule of thumb, since less wire stickout typically results in a more stable arc and better low-voltage penetration, the best wire stickout length is generally the shortest one allowable for the application.

One of the “cardinal sins” that almost every shop commits is over-welding. This means that if the drawing calls for a 1/4″ fillet weld, most shops will put down a 5/16″ weld. The reasons? Either they don’t have a fillet gauge and are not exactly sure of the size of the weld they are producing or they put in some extra to “cover” themselves and make sure there is enough weld metal in place. But, over-welding leads to tremendous consumable waste. Let’s look again at our example. For a 1/4″ fillet weld, the typical operator will use .129 lbs. per foot of weld metal. The 5/16″ weld requires .201 lbs. per foot of weld metal – a 56 percent increase in weld volume compared to what is really needed. Plus, you must take into account the additional labor necessary to put down a larger weld. Not only is the company paying for extra, wasted consumable material, a weld with more weld metal is more likely to have warpage and distortion because of the added heat input. It is recommended that every operator be given a fillet gauge to accurately produce the weld specified – and nothing more. In addition, changes in wire diameter may be used to eliminate over-welding.

A few tips on welding equipment, MIG and TIG welders, plasma cutters. TIG welding is similar to to a MIG welder as it uses an electric arc in the same was as MIG welding does but differs in a few ways. Instead of a continuous spool of consumable wire, a TIG welder uses long tungsten welding rods that are manually slowly fed into the weld puddle to join the metal. TIG welding requires gas, usually argon, to protect and cool the weld puddle from external contamination. TIG welding is more suited to welding thinner materials such as stainless steel and aluminium as you can get the power down lower to reduce the risk of blow through and can even weld two dissimilar metals. Suitable for tricky welds such as S curves but TIG welders are still capable of welding heavier materials depending on the machine. TIG welding takes more practice that MIG welding as the process is much more manual with controlling the torch, welding rod and gas by hand (and foot for the gas) but once mastered will produce the highest quality welds making it the better choice where perfect, precise welds are required but due to the manual process is the least productive.

Flat-Position Welding Increases Welding Speed : It’s common knowledge that welding in a horizontal position will be the easiest and fastest way to weld. A flat position is not as taxing to maintain and the welding puddle will stay in place. Take some time to evaluate each project before beginning in order to make sure the majority of welds can be completed in this position. If a job calls for vertical welding, see this article about vertical welding. Core Wire Feeder Increases TIG Welding Speed: For professional welders hoping to speed up TIG welding, a core wire feeder will add filler metal through an automated process. Watch this video on how it works. This enables welders to work with both hands and to maintain a constant flow of wire into the welding puddle. Ed Craig at the Frabricator writes about the wire feeder process first developed in Europe, saying it is “suitable for all-position welding on materials of any thickness, the process addresses traditional GTAW limitations and can enhance both manual and automated TIG weld quality and productivity.” Discover extra info on MIG Welding Machines.

Use gas lens style collet bodies and cups to weld stainless steel: Use gas lens style collet bodies and cups to weld stainless steel. The screen in the gas lens allows far better gas coverage of your welds. You can use gas lenses to weld all materials is you want; they also allow you to stick your tungsten up to 1” out of the cup by increasing gas flow. Sometimes you need to extend it just to reach a tight spot. The screen diffuses gas at higher gas flow rates eliminating turbulence which is what you would get if you tried this without the gas lens. Too much gas is as bad as too little gas. (Especially for TIG welding aluminum) Typical gas flow rates are around 15 to 20 cfh. Bu it really depends on the nozzle/cup diameter. While I am on the subject, what do the numbers on TIG cups mean? I am glad you asked… A #4 means 4/16″ or 1/4″ A #7 means 7/16″. In other words the number cup means how large the inside diameter in 1/16’s. When you use a #4 cup remember to adjust the argon flow to around 10cfh. And the bigger the cup inside diameter, the more gas flow….to an extent.